Article

Palladium(0)-Catalyzed Synthesis of Medium-Sized Heterocycles by Using Bromoallenes as an Allyl Dication Equivalent
Hiroaki Ohno, Hisao Hamaguchi, Miyo Ohata, Shohei Kosaka, and Tetsuaki Tanaka
J. Am. Chem. Soc., 2004, 126 (28), 8744-8754• DOI: 10.1021/ja048693x • Publication Date (Web): 26 June 2004

Downloaded from http://pubs.acs.org on March 31, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 4 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Palladium(0)-Catalyzed Synthesis of Medium-Sized Heterocycles by Using Bromoallenes as an Allyl Dication Equivalent

Hiroaki Ohno,* Hisao Hamaguchi, Miyo Ohata, Shohei Kosaka, and Tetsuaki Tanaka*
Contribution from the Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
Received March 8, 2004; E-mail: t-tanaka@phs.osaka-u.ac.jp

Abstract

We have developed a highly regio- and stereoselective synthesis of medium-sized heterocycles containing one or two heteroatoms via cyclization of bromoallenes bearing an oxygen, nitrogen, or carbon nucleophilic functionality in the presence of a palladium (0) catalyst and alcohol. In this reaction, bromoallenes act as an allyl dication equivalent, and the intramolecular nucleophilic attack takes place exclusively at the central carbon atom of the allene moiety. Interestingly, bromoallenes having a carbon nucleophile with a five-atom tether afford eight-membered rings with trans-configuration, while those having an oxygen or a nitrogen nucleophile give the corresponding cis-rings selectively. This is the first example that demonstrates the synthesis of medium-sized rings via cyclization of bromoallenes, and this reaction provides a very useful method for a catalytic synthesis of seven- and eight-membered heterocycles without using high dilution conditions.

Introduction

Medium-sized heterocycles are an extremely important class of compounds, the structural units of which are commonly found within the framework of a variety of natural products. ${ }^{1}$ In particular, seven- and eight-membered heterocycles are constituents of a number of compounds with interesting pharmacological properties. ${ }^{2,3}$ The abundance of medium rings bearing oxygen or nitrogen atom(s) in medicinally interesting compounds continues to ensure that they are important synthetic targets for organic chemists. Synthetic routes to medium-ring heterocycles involving direct ring closure are often slow and hampered by unfavorable enthalpies (the strain in many medium rings) and entropies (probability of the chain ends meeting) of the reaction. Today, the most powerful methodology for the synthesis of medium-sized rings is the ring-closing metathesis $(\mathrm{RCM}),{ }^{4,5}$ that sometimes requires high dilution conditions for successful conversion and often involves generation of byproducts such as ethylene.

[^0]Currently, reactions of bromoallenes have attracted much interest due to their interesting chemical properties associated with the cumulated double bonds and a bromine atom. However, all the reactions of bromoallenes reported to date are intermolecular reactions such as organocopper-mediated substitutions, ${ }^{6}$ palladium-catalyzed cross-coupling reactions, ${ }^{7}$ and formation of allenylmetal reagents. ${ }^{8}$ Recently, we reported a highly stereoselective synthetic method of 2,3-cis-2-ethynylaziridines via the

[^1]Scheme 1. Aziridination of Bromoallene 1 in the Presence of a Palladium Catalyst

Figure 1. Bromoallenes as allyl dication equivalents.
intramolecular amination of bromoallenes. ${ }^{9}$ In the course of our examination of this aziridination reaction, we found that the reaction of bromoallene $\mathbf{1}$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and NaOMe in MeOH provided 2,3-cis-2-(1-methoxy)vinylaziridine $\mathbf{3}$ stereoselectively (Scheme 1). This result strongly suggests the formation of η^{3} allylpalladium complex 2 bearing a methoxy group on the central carbon. Namely, bromoallene $\mathbf{4}$ can act as allyl dication equivalent 5 when treated with palladium(0) in an alcoholic solvent (Figure 1). Although similar types of reaction are often observed in propargylic carbonates with a palladium catalyst and soft nucleophiles such as active methylene, aryl alcohols or amide, ${ }^{10}$ the reaction of allenic substrates and the synthesis of eight-membered rings are unprecedented. ${ }^{11}$

Utilizing this chemistry, we expected that various heterocyclic medium rings could be formed via intramolecular attack of an appropriate functionality such as an oxygen, a nitrogen, or active methylene nucleophile (Scheme 2). If the intermolecular nucleophilic attack at the central carbon atom of the allene moiety predominates over the intramolecular reaction (path A), cyclized products $\mathbf{8}$ and/or 9 would be obtained. On the other hand, if
(6) (a) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3059-3062. (b) Caporusso, A. M.; Polizzi, C.; Lardicci, L. Tetrahedron Lett. 1987, 28 , 6073-6076. (c) D'Aniello, F.; Mann, A.; Taddei, M. J. Org. Chem. 1996, 61, 4870-4871. (d) D'Aniello, F.; Mann, A.; Schoenfelder, A.; Taddei, M. Tetrahedron 1997, 53, 1447-1456. (e) Bernard, N.; Chemla, F.; Normant, J. F. Tetrahedron Lett. 1999, 40, 1649-1652. (f) Chemla, F.; Bernard, N.; Normant, J. Eur. J. Org. Chem. 1999, 2067-2078. (g) Caporusso, A. M.; Filippi, S.; Barontini, F.; Salvadori, P. Tetrahedron Lett. 2000, 41, 1227-1230. (h) Conde, J. J.; Mendelson, W. Tetrahedron Lett. 2000, 41, 811-814.
(7) (a) Märkl, G.; Attenberger, P.; Kellner, J. Tetrahedron Lett. 1988, 29, 36513654. (b) Gillmann, T.; Hülsen, T.; Massa, W.; Wocadlo, S. Synlett 1995, 1257-1259. (c) Saalfrank, R. W.; Haubner, M.; Deutscher, C.; Bauer, W.; Clark, T. J. Org. Chem. 1999, 64, 6166-6168. (d) Saalfrank, R. W.; Haubner, M.; Deutscher, C.; Bauer, W. Eur. J. Org. Chem. 1999, 23672372.
(8) (a) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1997, 62, 8976-8977. (b) Ma, S.; Yu, S.; Yin, S. J. Org. Chem. 2003, 68, 8996-9002.
(9) (a) Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett. 2001, 3, $2269-2271$. (b) Ohno, H.; Ando, K.; Hamaguchi, H.; Takeoka, Y.; Tanaka, T. J. Am. Chem. Soc. 2002, 124, 15255-15266.
(10) (a) Tsuji, J.; Watanabe, H.; Minami, I.; Shimizu, I. J. Am. Chem. Soc. 1985, 107, 2196-2198. For an excellent review, see: (b) Tsuji, J.; Mandai, T. Angew. Chem., Int. Ed. 1995, 34, 2589-2612. For recent examples: (c) Monteiro, N.; Arnold, A.; Balme, G. Synlett 1998, 1111-1113. (d) Yoshida, M.; Ihara, M. Angew. Chem., Int. Ed. 2001, 40, 616-619. (e) Labrosse, J.-R.; Lhoste, P.; Sinou, D. J. Org. Chem. 2001, 66, 6634-6642. (f) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2001, 42, 4869-4873. (g) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43, 1499-1502. (h) Yoshida, M.; Ihara, M. J. Am. Chem. Soc. 2003, 125, 4874-4881. (i) Kozawa, Y.; Mori, M. J. Org. Chem. 2003, 68, 8068-8074. (j) Yoshida, M.; Fujita, M.; Ihara, M. Org. Lett. 2003, 5, 3325-3327.
(11) For other synthesis of medium-ring heterocycles from allenes, see: (a) Shaw, R. W.; Gallagher, T. J. Chem. Soc., Perkin Trans. 1 1994, $3549-$ 3555. (b) Okawara, T.; Ehara, S.; Takenaka, A.; Hiwatashi, T.; Furukawa, M. Heterocycles 1995, 41, 1709-1714. (c) Grigg, R.; Sansano, J. M. Tetrahedron 1996, 52, 13441-13454. (d) Trost, B. M.; Michellys, P.-Y.; Gerusz, V. J. Angew. Chem., Int. Ed. 1997, 36, 1750-1753. (e) Larock, R. C.; Tu, C.; Pace, P. J. Org. Chem. 1998, 63, 6859-6866.

Scheme 2. Formation of Medium Rings via Palladium(0)-Catalyzed Cyclization of Bromoallenes

Scheme 3. Synthesis of Bromoallenes Bearing an Oxygen Nucleophile ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}, \mathrm{DEAD}, \mathrm{PPh}_{3}$, THF, rt; (b) TBAF, THF, $0{ }^{\circ} \mathrm{C}$; (c) $1 \% \mathrm{HCl} / \mathrm{EtOH}, \mathrm{rt}$; (d) $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBS}, \mathrm{DEAD}$, $\mathrm{PPh}_{3}, \mathrm{THF}$, rt. Abbreviations: TBS $=$ tert-butyldimethylsilyl; DEAD $=$ diethyl azodicarboxylate; $\mathrm{TBAF}=$ tetrabutylammonium fluoride.
the intramolecular nucleophilic attack takes place predominantly, cyclization at the central carbon atom of the allenic moiety would proceed to give $\mathbf{1 1} \mathrm{and} /$ or 12. In this contribution, we detail a highly regioselective synthetic method for medium-sized heterocycles $\mathbf{1 1}$ containing one or two heteroatoms by the pal-ladium(0)-catalyzed cyclization of bromoallenes. ${ }^{12}$ In all cases examined, the cyclization takes place at the central carbon regioselectively via path B to give a variety of medium-sized heterocycles.

Results and Discussion

Synthesis of Bromoallenes Bearing an Oxygen or a Nitrogen Nucleophilic Functionality. To investigate the synthesis of medium-ring heterocycles via cyclization of bromoallenes using a palladium catalyst as described in Scheme 2, the bromoallenes 15 and $\mathbf{1 7}$ bearing an oxygen nucleophilic functionality were prepared from bromoallenes $\mathbf{1 3}{ }^{13}$ as shown in Scheme 3. Diastereomerically pure ($S, \mathrm{a} S$)-bromoallenes $\mathbf{1 3}$ were used to see the effect of the axial chirality on the cyclization reaction. Thus, the treatment of $\mathbf{1 3}$ with $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2^{-}}$ OTBS or $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBS}$ under the Mitsunobu conditions gave 14 and 16 bearing the TBS group. The silyl group was then removed by TBAF or $1 \% \mathrm{HCl} / \mathrm{EtOH}$ to afford the desired $(S, \mathrm{a} S)$ bromoallenes $\mathbf{1 5}$ and $\mathbf{1 7}$ having a hydroxyalkyl group.

[^2]Scheme 4. Synthesis of Bromoallenes Bearing a Nitrogen Nucleophile ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) TsNHBoc or MsNHBoc, DEAD, PPh_{3}, THF, rt; (b) 3 N HCl, EtOAc, $60^{\circ} \mathrm{C}$.

The bromoallene $\mathbf{2 0}$ bearing a nitrogen nucleophilic functionality was also prepared from 15b, as shown in Scheme 4. The Mitsunobu reaction of $\mathbf{1 5 b}$ with TsNHBoc ${ }^{14}$ gave the N-Boc derivative 18, the Boc group of which was removed with 3 N HCl to afford the desired bromoallene 20. Similarly, 17b and 15d were converted into ($S, \mathrm{a} S$)-bromoallenes 21 and 23, respectively, through the reaction with MsNHBoc. ${ }^{14}$

Synthesis of Medium-Sized Nitrogen Heterocycles via Cyclization of Bromoallenes. According to the working hypothesis as depicted in Scheme 2, we next investigated the synthesis of medium-sized nitrogen heterocycles via cyclization of bromoallenes using a palladium catalyst. First, the bromoallene 15a lacking a C-4 substituent was treated with NaOMe (1.5 equiv) in MeOH in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ to afford the seven-membered ring $\mathbf{2 4 a}(61 \%)$ and its regioisomer 25a (28%, Table 1, entry 1). When the bromoallene 15b was employed, the seven-membered ring $\mathbf{2 4 b}{ }^{15}$ (73\%) and a small amount of its regioisomer 25b were obtained (9%, entry 2). In contrast, bromoallenes $\mathbf{1 5} \mathbf{c}-\mathbf{e}^{16}$ with a bulkier substituent at C-4 gave the seven-membered rings $\mathbf{2 4} \mathbf{c}-\mathbf{e}$ as the only isolable isomers (entries 3-5). These results clearly demonstrated that the regioselectivity of the second nucleophilic attack was controlled by the steric size of the substituent at C-4 of the bromoallenes. Next, the same reactions were conducted with bromoallenes $\mathbf{1 7 a}-\mathbf{e}$ bearing a five-atom tether between the allenic and hydroxyl groups (Table 2). In contrast to the sevenmembered ring formation, reaction of bromoallenes $17 a-\mathbf{e}^{16}$ gave the eight-membered rings $26 \mathbf{a}-\mathbf{e}$ as the sole isolable isomers, ${ }^{17}$ irrespective of the C-4 substituent of the bromoallenes. Unfortunately, the bromoallene $\mathbf{1 7 c}$ with a bulkier substituent at $\mathrm{C}-4$ gave the eight-membered ring 26c in low yield (14%) under the identical reaction conditions. However, the reactivity of 17c was slightly improved by using fresh NaOMe prepared in situ from NaH and MeOH (entry 3). On
(14) N-Boc sulfonamides, a useful nitrogen nucleophile in the Mitsunobu reaction, can be readily prepared by the reaction of sulfonamides with di-(tert-butyl) dicarbonate catalyzed by 4-(dimethylamino)pyridine: Neustadt, B. R. Tetrahedron Lett. 1994, 35, 379-380.
(15) Structure of $\mathbf{2 4 b}$ was confirmed by NOE analysis. Irradiation of the signal of $6-\mathrm{H}$ in 1,4-oxazepine $\mathbf{2 4 b}$ led to NOE enhancement of the signal of $5-\mathrm{H}$ and $1^{\prime}-\mathrm{H}\left(12.3 \%\right.$ for $5-\mathrm{H}$ and 7.2% for $\left.1^{\prime}-\mathrm{H}\right)$.

(16) For synthesis of bromoallenes 15e and 17e, see the Supporting Information.

Table 1. Synthesis of Seven-Membered Nitrogen Heterocycles via Cyclization of Bromoallenes Bearing an Oxygen Nucleophilic Functionality ${ }^{a}$
entry
${ }^{a}$ Reactions were carried out at $25^{\circ} \mathrm{C}$ in MeOH with diastereomerically pure bromoallenes, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5-10 \mathrm{~mol} \%)$, and NaOMe (1.5 equiv). ${ }^{b}$ Isolated yields.
the other hand, in the case of bromoallene 17 e which has a bulkier substituent at $\mathrm{C}-5$, the reaction proceeded smoothly to give eight-membered ring 26e in 73% yield (entry 5).

Next, we investigated the synthesis of seven- and eightmembered nitrogen heterocycles via cyclization of bromoallenes bearing a nitrogen functionality (Table 3). Under the identical reaction conditions, bromoallenes 20 and 23 gave the sevenmembered rings 27a and 27b, respectively as a single isomer (entries 1 and 2). Furthermore, bromoallene 21 gave the eightmembered ring 27 c as a single isomer (entry 3). From the results shown in Tables 1-3, we found that the intramolecular nucleophilic attack takes place at the central position of the
(17) The cis-configuration of the eight-membered ring 26 was determined by NOE analysis. For example, in the case of 1,5-oxazocine 26b, NOE was observed between $\left[6-\mathrm{H}\right.$ and $7-\mathrm{H}(9.6 \%)$] and $\left[7-\mathrm{H}\right.$ and $\left.1^{\prime}-\mathrm{H}(5.2 \%)\right]$.

Table 2. Synthesis of Eight-Membered Nitrogen Heterocycles via Cyclization of Bromoallenes Bearing an Oxygen Nucleophilic Functionality ${ }^{a}$
entry
${ }^{a}$ Reactions were carried out at $25^{\circ} \mathrm{C}$ in MeOH with diastereomerically pure bromoallenes, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5-15 \mathrm{~mol} \%)$, and NaOMe (1.5 equiv). ${ }^{b}$ The reaction was conducted with NaH (1.5 equiv) and $\mathrm{MeOH} / \mathrm{THF}$ (1:1) at $25{ }^{\circ} \mathrm{C}$. ${ }^{c}$ The reaction was conducted at $50^{\circ} \mathrm{C}$. ${ }^{d}$ Isolated yields.

Table 3. Synthesis of Medium-Sized Nitrogen Heterocycles via Cyclization of Bromoallenes Bearing a Nitrogen Nucleophilic Functionality ${ }^{\text {a }}$
entry

[^3]allenic moiety (path B in Scheme 2) and, in most cases, the regioselectivity of the attack of methoxide is extremely high.

We next investigated the effect of axial chirality with $(S, \mathrm{a} R)$ bromoallenes 28 and 29^{18} on the formation of medium-sized nitrogen heterocycles, as shown in Scheme 5. Thus, reaction of ($S, \mathrm{a} R$)-bromoallene $\mathbf{2 8}$ gave 1,4-oxazepine derivatives 24b

Scheme 5. Reaction of $(S, a R)$-Bromoallenes

${ }^{a}$ Reagents and conditions: (a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{NaOMe}$ (1.5 equiv), $\mathrm{MeOH}, \mathrm{rt}, 2 \mathrm{~h} ;(\mathrm{b}) \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{~mol} \%), \mathrm{NaOMe}$ (1.5 equiv), $\mathrm{MeOH}, \mathrm{rt}$, 12 h .

Scheme 6. Cyclization with Other Alcohols as the Second Nucleophile

(67\%) and 25b (10%) that is comparable to the result of $(S, \mathrm{a} S)$ bromoallene 15b (Table 1, entry 2). Similarly, ($S, \mathrm{a} R$)-29 was also cyclized into 1,4-diazepine derivative 27a under identical reaction conditions in 50% yield (compare with Table 3, entry $1)$. From these results, both the ($S, \mathrm{a} S$)- and $(S, \mathrm{a} R)$-bromoallenes equally undergo the present transformation to give the same products, which means that a diastereomeric mixture of bromoallenes can be directly employed for preparative use.

Other alcohols could be analogously used instead of MeOH for the present cyclization reaction (Scheme 6). For example, bromoallene 15d was treated with a preformed mixture of NaH (1.5 equiv) and $\mathrm{EtOH}-\mathrm{THF}$ (1:1) in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$) to afford the seven-membered ring 30 having an ethoxy group (60%). Similarly, the reaction of bromoallene 15b with BnOH gave benzyloxy derivatives 31 (81%) and $\mathbf{3 2}$ (6\%). ${ }^{19}$

Next, we synthesized the bromoallene 36 with SES (2trimethylsilylethanesulfonyl) group ${ }^{20}$ as a nitrogen protecting group, and investigated the cyclization reaction and deprotection (Scheme 7). Compound 33 was readily prepared from Lphenylalanine following the literature. ${ }^{9}$ The treatment of $\mathbf{3 3}$ with MsCl and $\mathrm{Et}_{3} \mathrm{~N}$ gave the corresponding mesylate, and the crude mesylate was then allowed to react with $\mathrm{CuBr} \cdot \mathrm{SMe}_{2} / \mathrm{LiBr}^{21}$ to afford the $(S, \mathrm{a} S)$-bromoallene 34. Removal of the Boc group
(18) The ($S, \mathrm{a} R$)-bromoallenes 28 and 29 were synthesized by the identical procedure shown in Scheme 4 from known allenes. ${ }^{9}$ For details, see the Supporting Information.
(19) Structure of $\mathbf{3 2}$ was confirmed by NOE analysis as shown below.

(20) Weinreb, S. M.; Demko, D. M.; Lessen, T. A. Tetrahedron Lett. 1986, 27, 2099-2102.

Scheme 7. Synthesis and Deprotection of N-SES-1,4-Oxazepine 37^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF},-60^{\circ} \mathrm{C}$; (b) $\mathrm{CuBr} \cdot \mathrm{DMS}$, $\mathrm{LiBr}, \mathrm{THF}$, rt; (c) $3 \mathrm{~N} \mathrm{HCl}, \mathrm{EtOAc}, 50^{\circ} \mathrm{C}$; (d) SESCl, Et ${ }_{3} \mathrm{~N}$, DMF, $0^{\circ} \mathrm{C}$; (e) DEAD, $\mathrm{PPh}_{3}, \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}, \mathrm{THF}$; (f) $1 \% \mathrm{HCl} / \mathrm{EtOH}$.
gave the corresponding amine, which was then treated with SESCl to afford the SES amide 35. The treatment of $\mathbf{3 5}$ with $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}$ under the Mitsunobu conditions gave the corresponding bromoallene, the silyl ether of which was then cleaved with $1 \% \mathrm{HCl} / \mathrm{EtOH}$ to afford 36 bearing an oxygen nucleophilic functionality. As we expected, the palladium(0)catalyzed cyclization of the bromoallene $\mathbf{3 6}$ gave the sevenmembered ring $\mathbf{3 7}$ as a single isomer. The SES group of $\mathbf{3 7}$ was readily removed by treatment with CsF in DMF^{20} at $95^{\circ} \mathrm{C}$ to give $\mathbf{3 8}$ in 73% yield. From these observations, the described transformation is also useful for the synthesis of 1,4-oxazepine bearing a free amino group, by using the SES group as an easily removable protecting group.

We investigated the synthesis of benzo-annulated mediumsized heterocycles, which are the basic structures of pharmacologically important compounds, ${ }^{22}$ by cyclization of bromoallenes. The requisite bromoallenes 40 and 44 were synthesized by a similar procedure as described in Scheme 3. The treatment of 13b with 2-(tert-butyldimethylsiloxy)benzyl alcohol 39^{23} under the Mitsunobu conditions followed by cleavage of the silyl ether by $1 \% \mathrm{HCl} / \mathrm{EtOH}$ afforded 40 having a phenolic hydroxyl group as the nucleophilic functionality (Scheme 8). The bromoallene 44 was also synthesized by the Mitsunobu reaction of an aniline derivative 42, which was prepared from 41^{25} by protection of the primary hydroxyl group with the TBS group, with the known bromoallenol 43. ${ }^{24}$

The palladium(0)-catalyzed cyclization of bromoallene 40 in MeOH gave benzo[b]-1,5-oxazocine $\mathbf{4 5}$ in low yield (15%; Table 4, entry 1). The yield was slightly improved by use of fresh NaOMe prepared from NaH and MeOH (33%; entry 2); however, a considerable amount of the starting material was recovered (24%). In contrast, when the reaction was conducted in a mixed solvent of $\mathrm{MeOH} / \mathrm{THF}$ (1:1), the cyclized product
(21) (a) Montury, M.; Goré, J. Synth. Commun. 1980, 10, 873-879. (b) Elsevier, C. J.; Meijer, J.; Tadema, G.; Stehouwer, P. M.; Bos, H. J. T.; Vermeer, P. J. Org. Chem. 1982, 47, 2194-2196.
(22) See for example: (a) Kricka, L. J.; Ledwith, A. Chem. Rev. 1974, 74, 101123. (b) Kaiser, C.; Ali, F. E.; Bondinell, W. E.; Brenner, M.; Holden, K. G.; Ku, T. W.; Oh, H.-J.; Ross, S. T.; Yim, N. C. F.; Zirkle, C. L.; Hahn, R. A.; Sarau, H. M.; Setler, P. E.; Wardell, J. R., Jr. J. Med. Chem. 1980, 23, 975-976. (c) Flynn, G. A.; Giroux, E. L.; Dage, R. C. J. Am. Chem. Soc. 1987, 109, 7914-7915. See also refs 2c and 3d.
(23) Prakash, C.; Saleh, S.; Blair, I. A. Tetrahedron Lett. 1994, 35, 7565-7568.
(24) Landor, P. D.; Landor, S. R.; Leighton, P. J. Chem. Soc., Perkin Trans. 1 1975, 1628-1632.
(25) Consonni, R.; Croce, P. D.; Ferraccioli, R.; Rosa, C. L. J. Chem. Soc., Perkin Trans. 1 1996, 1809-1814.

Scheme 8. Synthesis of Bromoallenes 40 and 44^{a}

${ }^{a}$ Reagents and conditions: (a) 39, $\mathrm{PPh}_{3}, \mathrm{DEAD}$, THF, rt; (b) $1 \% \mathrm{HCl} /$ EtOH, $75{ }^{\circ} \mathrm{C}$; (c) TBSCl, imidazole, DMF, rt; (d) 43, PPh_{3}, DEAD, THF, rt; (e) $1 \% \mathrm{HCl} / \mathrm{EtOH}$, rt.

Table 4. Synthesis of Benzo-1,5-oxazocines 45 and 46^{a}

| entry substrate | base | solvent | time | product (yield) ${ }^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | NaOMe | MeOH | 20 |

${ }^{a}$ Reactions were carried out at $25^{\circ} \mathrm{C}$ with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and a base (1.5 equiv). ${ }^{b}$ Isolated yields. ${ }^{c} 24 \%$ of $\mathbf{4 0}$ was recovered.

45 was obtained in a better yield (57%; entry 3). Similarly, the reaction of the bromoallene $\mathbf{4 4}$ gave benzo[c]-1,5-oxazocine $\mathbf{4 6}$ under the same reaction conditions in high yield (82%; entry 4).

Synthesis of Azocine, Azepine, Oxocine, and Oxepine Derivatives. From these results, we found that bromoallenes can act as allyl dication equivalents that are extremely useful for the synthesis of medium-sized nitrogen heterocycles bearing two heteroatoms. Next, we investigated a novel synthesis of seven- and eight-membered rings possessing one heteroatom, such as hexahydroazocines, tetrahydroazepines, tetrahydrooxocines, and tetrahydrooxepines. The requisite bromoallene 49 which bears an oxygen nucleophilic functionality was readily synthesized from monosilylated diol $\mathbf{4 7}^{26}$ as shown in Scheme 9. Swern oxidation of 47, ethynylation of the resulting aldehyde, and removal of the TMS group afforded a propargyl alcohol 48, which was converted into the bromoallene 49 by treatment of the corresponding mesylate with $\mathrm{CuBr} \cdot \mathrm{SMe}_{2} / \mathrm{LiBr}^{21}$ followed by desilylation. Furthermore, 49 was converted into the corresponding azacycle precursor $\mathbf{5 0}$, which bears an amide group as a nucleophilic functionality, by Mitsunobu condensa-

[^4]Scheme 9. Synthesis of Bromoallenes 49 and 50°

${ }^{a}$ Reagents and conditions: (a) $(\mathrm{COCl})_{2}$, DMSO, then $(i-\operatorname{Pr})_{2} \mathrm{NEt}$; (b) TMS-acetylene, n - BuLi ; (c) $\mathrm{NaOMe}, \mathrm{MeOH}$; (d) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$; (e) $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}, \mathrm{LiBr}$; (f) $1 \% \mathrm{HCl} / \mathrm{EtOH}$; (g) $\mathrm{MsNHBoc}, \mathrm{PPh}_{3}$, DEAD; (h) 3 N HCl, EtOAc.

Table 5. Palladium-Catalyzed Formation Medium Rings Including One Heteroatom ${ }^{a}$
entry
${ }^{a}$ All reactions were carried out using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ and NaH (1.5 equiv). ${ }^{b}$ Isolated yields.
tion followed by deprotection with dilute HCl . Other requisite bromoallenes $\mathbf{5 1}, \mathbf{5 2}, \mathbf{5 3}$, and $\mathbf{5 4}$ (Table 5) were also prepared by a similar procedure (see the Supporting Information).

We next investigated the cyclization reaction using the prepared bromoallenes. The results are summarized in Table 5 . As we expected, treatment of the bromoallene $\mathbf{5 1}$ with a stirred

Scheme 10. Reaction of Bromoallene 63 Having an Unsubstituted Carbon Tether

mixture of $\mathrm{NaH}, \mathrm{BnOH}$, and THF in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave the tetrahydrooxepine derivative 55 in 72% yield by the first intramolecular nucleophilic addition to form an η^{3}-allyl palladium intermediate followed by the second nucleophilic attack by benzyloxide (entry 1). Similarly, the bromoallene 52 having a protected diol moiety was converted into 56 (entry 2). In contrast, exposure of 49 to the identical cyclization conditions afforded eight-membered heterocyclic diene 58 as a major product (entry 3), which was formed by β-hydride elimination of the η^{3}-allylpalladium(II) intermediate of the type 10 (Scheme 2). This is presumably due to the relatively highly acidic nature of the β-hydride at the benzylic position. ${ }^{27}$ Medium-sized nitrogen heterocycles were also synthesized starting from the bromoallenes $\mathbf{5 3}, \mathbf{5 4}$, and $\mathbf{5 0}$ bearing a protected amino group (entries 4-6). Interestingly, when the amino allene 50 was used (entry 6), a methoxylated benzo $[d]$ azocine derivative 61 was obtained as a major product $(60 \%$ yield) along with a small amount of β-elimination product 62 (5\% yield, compare with entry 3).

It should be clearly noted that, in contrast to the seven- and eight-membered ring formations possessing two heteroatoms (Table 1, entry 1 and Table 2, entry 1), bromoallene 63^{24} having an unsubstituted carbon tether afforded six-membered ring 64^{28} in 65% yield (Scheme 10) as a result of the first intermolecular nucleophilic attack by benzyloxide to form an η^{3}-allylpalladium intermediate of the type 7 described in Scheme 2, followed by the intramolecular nucleophilic reaction. From these results, it is apparent that the substituents or a heteroatom on the tether assists the formation of the intermediate of the type $\mathbf{1 0}$ described in Scheme $2 .{ }^{29}$

Reaction of Bromoallenes Having a Carbon Nucleophile. We next investigated the cyclization reaction of bromoallenes which have an active methylene as a nucleophile. Primary alcohols $\mathbf{1 7 b}$ and $\mathbf{1 7 d}$ were converted to the corresponding iodides, which were treated with NaH and dimethyl malonate to afford the requisite bromoallenes $\mathbf{6 6}$ and 68, respectively, as shown in Scheme 11.

In contrast to the reaction of the bromoallenes having an oxygen or nitrogen nucleophile affording cis-rings exclusively, the bromoallenes 66 and 68 having an active methylene nucleophile gave eight-membered rings 67 and 69 with transconfiguration (56% and 31%, respectively). ${ }^{30}$ These allenes are found to be less reactive than those having an oxygen or nitrogen nucleophile, presumably due to the steric hindrance. The observed trans-selectivity will be discussed later (Scheme 13).

[^5]

Scheme 11. Synthesis and Cyclization Reaction of Bromoallenes Having a Carbon Nucleophile ${ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (a) (i-Pr) ${ }_{2} \mathrm{NEt}, \mathrm{PPh}_{3}, \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (b) NaH , $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$, DMF, rt; (c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{~mol} \%), \mathrm{NaOMe}$ (1.5 equiv), $\mathrm{MeOH}, 50{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (d) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, NaH (1.5 equiv), $\mathrm{MeOH}-$ THF (1:1), $50^{\circ} \mathrm{C}, 4 \mathrm{~h}$.

Scheme 12. Possible Reaction Course

Mechanism of the Cyclization. A possible reaction course is shown in Scheme 12. Oxidative addition of bromoallene 70 to $\operatorname{Pd}(0)$ gives η^{1}-allenylpalladium complex 71, which is in a state of equilibrium with η^{3}-propargylpalladium complex 72.31 The first intramolecular nucleophilic addition occurs to the central carbon of η^{3}-propargylpalladium complex 72 to produce a palladacyclobutene 73. ${ }^{32}$ This is followed by protonation by MeOH to generate η^{3}-allylpalladium complex 74. In many cases, the methoxide attacks the terminal carbon to give $\mathbf{7 5}$ because of the steric repulsion with the R substituent. When the R substituent is effectively smaller ($\mathrm{R}=\mathrm{H}$ or Me), a considerable amount of the adduct 76 is obtained by the attack of methoxide to the internal carbon of η^{3}-allylpalladium complex $\mathbf{7 4}$ from the backside of the palladium atom. ${ }^{33,34}$

Recently, a related palladium-catalyzed cyclization of propargyl carbonates bearing a nucleophilic β-lactam moiety was
(29) Although formation of benzo-annulated eight-membered ring proceeded in good yields (Table 5, entries 3 and 6), reaction of bromoallene $\mathbf{9 0}$ under the same reaction conditions afforded dimethoxylated product 91 . Therefore, it is apparent that a substitution which effectively assists the cyclization is essential for the eight-membered ring formation containing one heteroatom.

(30) The trans-configuration of $\mathbf{6 7}$ was determined by NOE analysis as shown below.

(31) (a) Ogoshi, S.; Tsutsumi, K.; Nishiguchi, S.; Kurosawa, H. J. Organomet Chem. 1995, 493, C19-C21. (b) Tsutsumi, K.; Ogoshi, S.; Nishiguchi, S.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 1938-1939. (c) Tsutsumi, K.; Kawase, T.; Kakiuchi, K.; Ogoshi, S.; Okada, Y.; Kurosawa, H. Bull. Chem. Soc. Jpn. 1999, 72, 2687-2692. (d) Ogoshi, S.; Kurosawa, H. J. Synth. Org. Chem. Jpn. 2003, 61, 14-23.
reported by Mori: the reaction with a palladium catalyst in the presence of a bidentate ligand gave carbacepham derivatives which can be formed by the central attack of the lactam nitrogen onto an η^{3}-propargylpalladium complex, while the reaction in the presence of a monodentate ligand yielded carbapenams by a nucleophilic attack on the terminal carbon of an η^{1}-allenylpalladium complex. ${ }^{10 f, g, i}$ In contrast, our bromoallene cyclization proceeds in the presence of a monodentate ligand to afford medium rings by the reaction of nucleophiles onto the central carbon of the propargyl palladium complex. ${ }^{35}$ Kurosawa, Ogoshi, and co-workers recently reported that a polar solvent shifts the equilibrium between η^{1}-allenyl- and η^{3}-propargylpalladium complexes toward the latter ${ }^{31 \mathrm{c}}$ which is a reactive intermediate for the central attack. ${ }^{36}$ Although the exact reason for the observed central attack in the presence of a monodentate ligand and an alcohol is unclear, the polar alcoholic solvent might promote the central attack by shifting the equilibrium toward the η^{3}-propargylpalladium complex 72. An alcoholic solvent will also promote the reaction by protonation of the palladacyclobutene intermediate 73.

As described above, bromoallenes 77 having an oxygen or nitrogen nucleophile afforded the eight-membered rings 79 with cis-configuration (Scheme 13), while bromoallene 66 (Scheme 11) having an active methylene nucleophile gave the corresponding trans-ring selectively. In the reaction of 77, the methoxide will attack the less hindered terminal carbon of the $s y n-\eta^{3}$-allylpalladium complex $\mathbf{7 8}$ to afford cis-79. On the other hand, the $\operatorname{syn}-\eta^{3}$-allylpalladium complex $\mathbf{8 0}$, which can be formed from 66, will be less stable because of the steric repulsion between the axial proton and one ester group. Accordingly, the methoxide would attack the anti- η^{3}-allylpal-
(32) In the reaction of propargylic carbonates, it is proposed that the first nucleophilic addition onto the η^{3}-propargylpalladium produces a metallacyclobutene, protonation of which generates the η^{3}-allylpalladium complex: Casey, C. P.; Nash, J. R.; Yi, C. S.; Selmeczy, A. D.; Chung, S.; Powell, D. R.; Hayashi, R. K. J. Am. Chem. Soc. 1998, 120, 722-733. See also, ref 10 j .
(33) As an alternative mechanism, the protonation of $\mathbf{7 1}$ by MeOH would lead to a terminal allene such as $\mathbf{9 2}$ and $\operatorname{Pd}($ II $)$, which activates the allene π-system and allows the first nucleophilic attack. ${ }^{34}$ The second nucleophilic reaction of the resulting η^{3}-allylpalladium intermediate by the methoxide might lead to 59 and $\operatorname{Pd}(0)$. However, the cyclization reaction of the amino allene 92 with PdBr_{2} gave the 2-vinylpiperidine 93 in 51% yield along with a trace amount of 59 (ca. 1% yield). From this result, the alternative mechanism through the terminal allene 92 cannot be the major reaction pathway.

(34) A palladium(II) catalyst induces nucleophilic reaction onto allenes, see: (a) Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 42574260. (b) Kimura, M.; Fugami, K.; Tanaka, S.; Tamaru, Y. J. Org. Chem. 1992, 57, 6377-6379. Hiemstra reported that the cyclization of allenic lactams takes place at the central carbon atom of allene: (c) Karstens, W. F. J.; Rutjes, F. P. J. T.; Hiemstra, H. Tetrahedron Lett. 1997, 38, 62756278. (d) Karstens, W. F. J.; Stol, M.; Rutjes, F. P. J. T.; Hiemstra, H. Synlett 1998, 1126-1128. 2-Vinylpiperidines were synthesized from amino allenes in the presence of a catalytic amount of a palladium complex under weakly acidic conditions: (e) Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421-5424.
(35) It should be clearly noted that propargylic substrates are not suitable for the palladium-catalyzed medium-ring cyclization. For example, while the bromoallene 15d yielded 1,4-oxazepine 24d in 73% yield (Table 1), the corresponding propargylic carbonate was converted to the diol by solvolysis under identical reaction conditions. Similarly, the corresponding propargyl bromide to $\mathbf{1 7 b}$ was found to be relatively unstable under the cyclization conditions, and only a small amount of the desired cyclized product 26b was obtained (12% yield) by treatment with NaOMe in MeOH in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .{ }^{12 \mathrm{a}}$
(36) Baize, M. W.; Blosser, P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1996, 15, 164-173. See also, refs 31c and 32 .

Scheme 13. Possible Reaction Course

Scheme 14. Cyclization of Bromoallene 83 Bearing Two Oxygen Functionalities

ladium complex 82 to give the eight-membered ring 67 with trans-configuration.

Finally, we investigated the reaction of bromoallene $\mathbf{8 3}^{37}$ bearing two oxygen functionalities, which has two reaction pathways (Scheme 14). If the hydroxyl group $\mathrm{A}\left(\mathrm{OH}_{\mathrm{A}}\right)$ attacks η^{3}-propargylpalladium(II) bromide 84 (path A), 86 and/or 87 will be produced via the intermediate 85 . In contrast, reaction of OH_{B} in η^{3}-propargylpalladium 84 (path B) leads to the sevenmembered ring 89. Interestingly, exposure of $\mathbf{8 3}$ to the pal-ladium-catalyzed cyclization conditions gave $\mathbf{8 6}$ (31% yield), $\mathbf{8 7}{ }^{38}(11 \%)$, and $\mathbf{8 9}$ (45%). Although the seven-membered ring 89 has two heteroatoms, this result clearly shows that the bromoallenes cyclize into seven-membered heterocycles as easily as five-membered rings.

Conclusions

In conclusion, we have developed a novel synthesis of medium-sized heterocycles containing one or two heteroatoms via cyclization of bromoallenes bearing an oxygen, nitrogen or carbon nucleophile in the presence of a palladium(0) catalyst and alcohol. In many cases, this reaction proceeds in high regioand stereoselectivity, and affords desired medium rings in good to high yields. In the reaction of the bromoallenes having a

[^6]carbon nucleophile, the eight-membered rings with transconfiguration were obtained. On the other hand, the reaction of the bromoallenes having an oxygen or nitrogen nucleophile afforded the corresponding cis-rings exclusively. This synthetic method would provide a wide variety of heterocycles including those having an enamine or enol moiety without using high dilution conditions.

Experimental Section

General Methods. Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3}. Chemical shifts are reported in parts per million downfield from internal $\mathrm{Me}_{4} \mathrm{Si}(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, ddd $=$ doublet of double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Optical rotations were measured in CHCl_{3}. For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) or silica gel 60 (finer than 230 mesh, Merck) was employed.

The known compounds $\mathbf{1},{ }^{9} \mathbf{1 3 b} \mathbf{- d},{ }^{9} \mathbf{3 3},{ }^{9} \mathbf{3 9},{ }^{23} \mathbf{4 1},{ }^{25} \mathbf{4 3},{ }^{24} \mathbf{4 7},{ }^{26}$ and 63^{24} were synthesized according to the literature.
(4S,aS)-1-Bromo-4-[N,N-(2-tert-butyldimethylsilyloxyethyl)(4-me-thylphenylsulfonyl)amino]penta-1,2-diene (14b). To a stirred solution of $\mathrm{PPh}_{3}(551 \mathrm{mg}, 2.1 \mathrm{mmol})$ in THF (1.5 mL) under nitrogen were added a solution of the bromoallene $\mathbf{1 3 b}(190 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$, a solution of $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}(317 \mathrm{mg}, 1.8 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$, and diethyl azodicarboxylate ($914 \mathrm{mg}, 2.1 \mathrm{mmol} ; 40 \%$ solution in toluene) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at room temperature. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-ethyl acetate ($10: 1$) to give $\mathbf{1 4 b}(250 \mathrm{mg}, 88 \%$ yield, $>98 \%$ de $)$ as a colorless oil: $[\alpha]^{26}{ }_{\mathrm{D}}-48.3\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1342\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 0.08 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}$), $0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 1.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CMe), 2.43 (s, 3H, PhMe), 3.13 (ddd, $J=15.0,8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.24 (ddd, $J=15.0,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 3.76$ (ddd, $J=10.0,8.0$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}), 3.85(\mathrm{ddd}, J=10.0,8.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.63-$ $4.69(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.12(\mathrm{dd}, J=5.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.05(\mathrm{dd}, J=$ $5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.29-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.72-7.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3$ (2C), 18.1, 18.3, 21.5, 25.9 (3C), 45.7, 51.4, 63.0, 74.8, 101.3, 127.2 (2C), 129.8 (2C), 137.4, 143.5, 202.4; MS (FAB) $m / z(\%) 476\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}, 27\right), 474\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 28\right)$, 73 (100); HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BrNO}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right)$, 474.1134; found, 474.1128.
(4S,aS)-1-Bromo-4-[N,N-(2-hydroxyethyl)(4-methylphenylsulfo-nyl)amino]penta-1,2-diene (15b). To a stirred solution of the bromoallene $\mathbf{1 4 b}$ ($230 \mathrm{mg}, 0.485 \mathrm{mmol}$) in THF (1.5 mL) under nitrogen was added tetrabutylammonium fluoride (1.0 M solution in THF; 0.63 $\mathrm{mL}, 0.632 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at this temperature. The mixture was made acidic with $4 \% \mathrm{HCl}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (2:1) to give $\mathbf{1 5 b}(160 \mathrm{mg}, 92 \%$ yield, $>99 \%$ de $)$ as a colorless oil: $[\alpha]^{21}{ }_{\mathrm{D}}$ -45.2 (c 1.00, CHCl_{3}); IR (KBr) cm ${ }^{-1} 3552(\mathrm{OH}), 1957(\mathrm{C}=\mathrm{C}=\mathrm{C})$, $1335\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, CMe), 2.44 (s, 3H, PhMe), 2.51 (dd, $J=6.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.18$3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79-3.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.70-4.79(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H})$, $5.14(\mathrm{dd}, J=5.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.08(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}$,
(38) The stereochemistry of the bicyclic product 87 was confirmed by NOE experiment and COSY analysis.

1-H), 7.31-7.34 (m, 2H, Ph), 7.73-7.75 (m, 2H, Ph); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 17.7, 21.5, 45.8, 51.6, 62.7, 75.2, 100.9, 127.2 (2C), 129.9 (2C), 136.7, 143.9, 202.5; MS (FAB) m / z (\%) $362\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right.$, 29), 360 ($\mathrm{MH}^{+},{ }^{99} \mathrm{Br}, 30$), 136 (100); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19}-$ $\mathrm{BrNO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right)$, 360.0269 ; found, 360.0261 .
(4S,aS)-1-Bromo-4-[N,N-(3-tert-butyldimethylsilyloxypropy)(4-methylphenylsulfonyl)amino]penta-1,2-diene (16b). By a procedure similar to that described for the preparation of the bromoallene 15b from 14b, the bromoallene $\mathbf{1 3 b}(474.3 \mathrm{mg}, 1.5 \mathrm{mmol})$ was converted into 16b ($674 \mathrm{mg}, 92 \%$ yield, $>98 \%$ de) as a colorless oil: $[\alpha]^{24}$ D -31.3 ($\left.c 0.945, \mathrm{CHCl}_{3}\right) ;$ IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1342\left(\mathrm{NSO}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, $1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe}), 1.78-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ph} M e), 3.16-3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.58-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68-4.77$ $(\mathrm{m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.16(\mathrm{dd}, J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.04(\mathrm{dd}, J=5.4$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.4$ (2C), 17.8, 18.2, 21.5, 25.9 (3C), 34.5 , $41.5,51.4,60.6,74.8,101.6,127.1$ (2C), 129.7 (2C), 137.5, 143.3, 202.2; MS (FAB) $m / z(\%) 490\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}, 24\right), 488\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 23\right)$, 73 (100); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BrNO}_{3} \mathrm{SSi}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right)$, 488.1290; found, 488.1277.
(4S,aS)-1-Bromo-4-[N,N-(3-hydroxypropyl)(4-methylphenylsul-fonyl)amino]penta-1,2-diene (17b). The bromoallene 16b (537 mg , $1.1 \mathrm{mmol})$ was dissolved in a $1 \% \mathrm{HCl}$ solution in ethanol (6 mL), which was prepared from concentrated HCl and EtOH , and the mixture was stirred for 25 min at room temperature. Water was added to the mixture, and the whole was extracted with EtOAc. The extract was washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (2:1) to give 17b (386 mg , 94% yield, de $=>99 \%$) as a colorless oil: $[\alpha]^{24} \mathrm{D}$ -20.7 (c 0.77, $\left.\mathrm{CHCl}_{3}\right)$; IR (KBr) cm ${ }^{-1} 3531(\mathrm{OH}), 1957(\mathrm{C}=\mathrm{C}=\mathrm{C})$, $1336\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, CMe), 1.83-1.92 (m, 2H, CH 2), $2.19(\mathrm{dd}, J=6.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $2.44(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ph} M e), 3.29-3.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75-3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.68-4.74(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.18(\mathrm{dd}, J=5.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.08$ (dd, $J=5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.31-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.70-7.72(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.6,21.5,33.8,40.5,51.1$, 59.2, 75.2, 101.5, 127.0 (2C), 129.9 (2C), 137.2, 143.6, 202.2; MS (FAB) m / z (\%) $376\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}, 16\right), 374\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 16\right), 69$ (100); HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrNO}_{3} \mathrm{~S}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 374.0426$; found, 374.0424.
(4S, aS)-1-Bromo-4-\{N,N-[2-N,N-(tert-butoxycarbonyl)[(4-meth-ylphenylsulfonyl)amino]ethyl](4-methylphenylsulfonyl)amino\}penta-1,2-diene (18). To a stirred mixture of $\mathrm{PPh}_{3}(85.2 \mathrm{mg}, 0.325 \mathrm{mmol})$ and TsNHBoc ($88.2 \mathrm{mg}, 0.325 \mathrm{mmol}$) in THF (1 mL) under nitrogen were added a solution of the bromoallene $\mathbf{1 5 b}(90 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF (1 mL) and diethyl azodicarboxylate ($142 \mathrm{mg}, 0.325 \mathrm{mmol} ; 40 \%$ solution in toluene) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at room temperature. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-ethyl acetate (5:1) to give $\mathbf{1 8}(130 \mathrm{mg}, 85 \%$ yield) as colorless crystals: $\mathrm{mp} 142{ }^{\circ} \mathrm{C}$ (n-hexane-ethyl acetate); $[\alpha]^{27}{ }_{\mathrm{D}}-68.4$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1728(\mathrm{C}=\mathrm{O}), 1358$ $\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe})$, $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 2.44(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Ph} M e$), 3.25 (ddd, $J=15.3$, $10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.45 (ddd, $J=15.3,10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.94 (ddd, $J=14.1,10.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.20 (ddd, $J=14.1$, $10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.72-4.81(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.06(\mathrm{dd}, J=5.7$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.05(\mathrm{dd}, J=5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.29-7.34(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ph}), 7.77-7.83(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.3$, 21.5, 21.6, 27.9 (3C), 43.0, 47.6, 52.1, 74.8, 84.6, 100.6, 127.4 (2C), 128.0 (2C), 129.3 (2C), 129.9 (2C), 136.7, 136.9, 143.7, 144.3, 150.7, 202.5; MS (FAB) $m / z(\%) 615\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}, 4.5\right), 613\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 4.8\right)$, 369 (100); HRMS (FAB) calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right)$, 613.1042; found, 613.1023.
($4 S$, , S)-1-Bromo-4-\{ N, N-(4-methylphenylsulfonyl)[2-[N-(4methylphenylsulfonyl)amino]ethyl]amino $\}$ penta-1,2-diene (20). To a stirred solution of the bromoallene $\mathbf{1 8}(153 \mathrm{mg}, 0.25 \mathrm{mmol})$ in EtOAc $(3 \mathrm{~mL})$ was added $3 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$ at room temperature. After stirring for 3 h at $60^{\circ} \mathrm{C}$, the mixture was made basic with $28 \% \mathrm{NH}_{4} \mathrm{OH}$. The whole was extracted with EtOAc. The extract was washed with water and brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (2:1) to give $20\left(118 \mathrm{mg}, 92 \%\right.$ yield) as a colorless oil; $[\alpha]^{25} \mathrm{D}-22.6$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3286\left(\mathrm{NHSO}_{2}\right), 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1331\left(\mathrm{NSO}_{2}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe}), 2.435$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ph} M e$), 2.441 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ph} M e$), $3.16-3.23\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $4.61-4.70(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 4.95(\mathrm{dd}, J=5.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 5.17$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.05(\mathrm{dd}, J=5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.29-7.35(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ph}), 7.65-7.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.78-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,21.5(2 \mathrm{C}), 43.1,43.8,51.5,75.3,100.5,127.18$ (2C), 127.19 (2C), 129.7 (2C), 130.0 (2C), 136.3, 136.7, 143.4, 144.0, 202.4; MS (FAB) m/z (\%) $515\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}, 24\right), 513\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 19\right)$, 369 (100); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ ($\mathrm{MH}^{+},{ }^{79} \mathrm{Br}$): 513.0517; found: 513.0535 .

General Procedure for the Synthesis of Medium-Sized Heterocycles via Cyclization of Bromoallenes. Synthesis of (5S)-7-Meth-oxymethyl-5-methyl-4-(4-methylphenylsulfonyl)- $2 H, 3 H, 4 H, 5 H-1,4-$ oxazepine (24b) and (5S,6R)-6-Methoxy-5-methyl-7-methylene-4-(4-methylphenylsulfonyl)-1,4-oxazepine (25b) (Table 1, Entry 2). To a stirred mixture of $\mathrm{NaOMe}(12.2 \mathrm{mg}, 0.225 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(8.7 \mathrm{mg}, 0.0075 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ under nitrogen was added dropwise a solution of the bromoallene $\mathbf{1 5 b}(54 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 3 h at this temperature. Concentration under reduced pressure gave an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (3:1) to give, in order of elution, 25b ($4.4 \mathrm{mg}, 9.4 \%$ yield) and $\mathbf{2 4 b}$ ($34.1 \mathrm{mg}, 73 \%$ yield). Compound 24b: colorless oil; $[\alpha]^{25}{ }_{\mathrm{D}}+24.7\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1674(\mathrm{C}=$ $\mathrm{C}-\mathrm{O}), 1331\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CMe}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Ph} M e$), 3.24 (s, 3H, OMe), 3.48 (ddd, $J=$ $14.5,6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.56 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCHH}$), $3.60(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCH} H), 3.91(\mathrm{ddd}, J=12.5,6.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}$), 4.04 (ddd, $J=14.5,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$), 4.14 (ddd, $J=12.5,7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.68(\mathrm{qd}, J=7.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$, $4.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.26-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.68-7.70(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.3,21.4,45.0,50.2,58.0$, 71.0, 73.0, 108.0, 127.1 (2C), 129.5 (2C), 137.7, 143.1, 154.5; MS (FAB) m / z (\%) $312\left(\mathrm{MH}^{+}, 71\right), 296$ (100); HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$, 312.1270; found, 312.1274. Compound 25b: colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}+46.8\left(c 0.49, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1635(\mathrm{C}=$ C), $1346\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CMe}$), 2.43 (s, $3 \mathrm{H}, \mathrm{Ph} M e$), 3.18 (ddd, $J=13.0,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHH), 3.46 (ddd, $J=13.0,8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$), 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.67 (ddd, $J=11.5,5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}), 3.83-3.88(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}), 3.90(\mathrm{ddd}, J=11.5,8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.22(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CHH}), 4.40(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH} H), 7.30-7.32$ (m, 2H, Ph), 7.67-7.69 (m, 2H, Ph); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $15.6,21.5,42.5,50.9,55.0,62.8,79.1,85.4,127.4$ (2C), 129.7 (2C), 136.4, 143.4, 158.6; MS (FAB) m/z (\%) $312\left(\mathrm{MH}^{+}, 24\right), 136$ (100); HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$, 312.1270; found, 312.1286.
(5S)-5-Benzyl-7-ethoxymethyl-4-(4-methylphenylsulfonyl)-2H, $\mathbf{3 H}, \mathbf{4 H}, \mathbf{5 H}-\mathbf{1}, \mathbf{4}$-oxazepine (30). To $\mathrm{NaH}(6 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added EtOH (0.5 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen, and the solution was stirred for 15 min at room temperature. To the stirred mixture were added Pd$\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ and a solution of the bromoallene $\mathbf{1 5 d}$ $(43.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{THF}(0.5 \mathrm{~mL})$ at room temperature. After stirring for 1.5 h at this temperature, the mixture was poured into icewater (1 mL) saturated with $\mathrm{NH}_{4} \mathrm{Cl}$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed with water and brine and dried over
MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-ethyl acetate ($7: 2$) to give $\mathbf{3 0}$ ($24 \mathrm{mg}, 60 \%$ yield) as a colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}+51.3\left(c \quad 0.82, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1684$ $(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1331\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe}$), 2.38 (s, $3 \mathrm{H}, \mathrm{Ph} M e$), 2.95 (dd, $J=13.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PhCHH}), 2.98(\mathrm{dd}, J=13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} H), 3.35(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}$), 3.53 (ddd, $J=15.5,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $3.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{EtOCHH}), 3.69(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, EtOCHH), 3.92 (ddd, $J=13.0,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.97 (ddd, J $=15.5,8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.19(\mathrm{ddd}, J=13.0,8.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH} H), 4.77-4.83(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.13-$ $7.28(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 7.49-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.1,21.5,40.8,45.7,56.0,65.6,70.9,71.1,106.7,126.6,127.2$ (2C), 128.5 (2C), 129.2 (2C), 129.4 (2C), 137.4, 137.6, 143.0, 155.6; MS (FAB) m/z (\%) $402\left(\mathrm{MH}^{+}, 24\right), 310$ (100); HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{MH}^{+}\right)$, 402.1739; found, 402.1748 .
(4S,aS)-1-Bromo-4-[N-(tert-butoxycarbonyl)amino]-5-phenylpenta-1,2-diene (34). To a stirred mixture of the propargylic alcohol 33 (1.24 $\mathrm{g}, 4.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.1 \mathrm{~mL}, 22.5 \mathrm{mmol})$ in THF (10 mL) was added $\mathrm{MsCl}(0.69 \mathrm{~mL}, 9.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h with warming to $-60^{\circ} \mathrm{C}$. The mixture was made acidic with $4 \% \mathrm{HCl}$ at $-60^{\circ} \mathrm{C}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, saturated NaHCO_{3}, water, and brine and was dried over MgSO_{4}. Concentration of the filtrate under reduced pressure followed by rapid filtration through a short pad of SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}$ gave a crude mesylate, which was used without further purification. A mixture of $\mathrm{CuBr} \cdot \mathrm{DMS}(1.8 \mathrm{~g}, 9.0 \mathrm{mmol})$ and $\mathrm{LiBr}(782 \mathrm{mg}$, 9.0 mmol) were dissolved in THF (6 mL) at room temperature under nitrogen. After stirring for 2 min , a solution of the above crude mesylate in THF (10 mL) was added to this reagent at room temperature. The mixture was stirred for 6 h at this temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and $28 \% \mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (7:1) to give 34 (1.05 g , 69% yield). Recrystallization from n-hexane-ethanol gave essentially pure $\mathbf{3 4}$ as colorless needles: mp $73{ }^{\circ} \mathrm{C} ;[\alpha]^{26}{ }_{\mathrm{D}}+140\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (KBr) cm ${ }^{-1} 3348\left(\mathrm{NHCO}_{2}\right), 1959(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1693(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}$) $\delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right), 2.83-2.96(\mathrm{~m}, 2 \mathrm{H}$, $\left.5-\mathrm{CH}_{2}\right), 4.47-4.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}$ and $4-\mathrm{H}), 5.42(\mathrm{dd}, J=5.4,5.4 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 6.04(\mathrm{dd}, J=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.17-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 333 \mathrm{~K}$) $\delta 28.4$ (3C), 41.2, 50.0, 74.9, 79.9, 102.3, 126.8, 128.5 (2C), 129.5 (2C), 136.9, 154.9, 201.1. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{2}$: C, $56.82 ; \mathrm{H}, 5.96 ; \mathrm{N}, 4.14$. Found: $\mathrm{C}, 56.81 ; \mathrm{H}$, 5.95; N, 4.09.
(4S,aS)-1-Bromo-4-\{ N-[2-(trimethylsilyl)ethanesulfonyl]amino\}-5-phenylpenta-1,2-diene (35). To a stirred solution of the bromoallene $34(778 \mathrm{mg}, 2.3 \mathrm{mmol})$ in EtOAc (6 mL) was added $3 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ at room temperature. After stirring for 1 h at $50^{\circ} \mathrm{C}$, the mixture was made basic with $28 \% \mathrm{NH}_{4} \mathrm{OH}$. The whole was extracted with EtOAc. The extract was washed with water and brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue. To a stirred solution of the residue in DMF (4 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.5 \mathrm{mmol})$ and $\mathrm{SESCl}(831 \mathrm{mg}, 4.14 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at this temperature and poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine and dried over MgSO_{4}. Concentration of the filtrate under reduced pressure followed by flash column chromatography over silica gel with n-hexane-ethyl acetate ($6: 1$) gave $\mathbf{3 5}$ ($780 \mathrm{mg}, 84 \%$ yield) as colorless needles: $\mathrm{mp} 80^{\circ} \mathrm{C}\left(n\right.$-hexane $\left.-\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]^{27} \mathrm{D}+105$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 3265\left(\mathrm{NHSO}_{2}\right), 1959(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1325$ $\left(\mathrm{NHSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.80-$ $0.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{TMSCH}_{2}\right), 2.66-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{2}\right), 2.91(\mathrm{dd}, J=$ $13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CHH}), 3.00(\mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH} H)$,
$4.30-4.39(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}$ and NH$), 5.51(\mathrm{dd}, J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, $6.12(\mathrm{dd}, J=5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.22-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-2.0(3 \mathrm{C}), 10.2,42.4,50.2,53.1,75.7,102.3$, 127.2, 128.7 (2C), 129.7 (2C), 136.2, 200.9. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24}{ }^{-}$ BrNO_{2} SSi: C, 47.75 ; H, 6.01; N, 3.48. Found: C, $47.53 ; \mathrm{H}, 5.87$; N, 3.39 .
(5S,aS)-1-Bromo-4-\{N,N-(2-hydroxyethyl)[2-(trimethylsilyl)ethanesulfonyl]amino $\}$-5-phenylpenta-1,2-diene (36). By a procedure similar to that described for the preparation of the bromoallene 17b from 13b, the bromoallene 35 ($205 \mathrm{mg}, 0.50 \mathrm{mmol}$) was converted into 36 (130 $\mathrm{mg}, 58 \%$ yield) as colorless crystals: $\mathrm{mp} 63-65^{\circ} \mathrm{C} ;[\alpha]^{28} \mathrm{D}+42.3(c$ $\left.1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3527(\mathrm{OH}), 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1325$ $\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.04\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.82-$ $0.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{TMSCH}_{2}\right), 2.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.31-2.42(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{SO}_{2} \mathrm{CHH}\right), 2.51-2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH} H\right), 2.99(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{CHH}$), 3.06 (dd, $J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH} H), 3.35-3.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.75-3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.77-4.85(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.55$ (dd, $J=5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.17$ (dd, $J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), $7.22-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.0$ (3C), $10.0,38.5,46.6,48.9,57.9,62.3,75.5,100.7,127.2,128.8$ (2C), 129.2 (2C), 137.4, 202.1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BrNO}_{3}$ SSi: C, $48.42 ; \mathrm{H}$, 6.32; N, 3.14. Found: C, 48.59; H, 6.27; N, 3.09.
(5S)-5-Benzyl-7-methoxymethyl-4-[2-(trimethylsilyl)ethanesulfo-nyl]-2H,3H,4H,5H-1,4-oxazepine (37). By a procedure identical to that described for the preparation of the 1,4-oxazepines $\mathbf{2 4 b}$ and $\mathbf{2 5 b}$ from 15b, the bromoallene $\mathbf{3 6}(49 \mathrm{mg}, 0.11 \mathrm{mmol})$ was converted into 37 ($34 \mathrm{mg}, 78 \%$ yield) as a colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}+3.17\left(c 1.02, \mathrm{CHCl}_{3}\right)$; IR (KBr) cm ${ }^{-1} 1674(\mathrm{C}=\mathrm{C}-\mathrm{O}), 1327\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-0.06\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.71-0.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{TMSCH}_{2}\right), 2.28-$ $2.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CHH}\right), 2.41-2.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH} H\right), 2.98(\mathrm{dd}, J=$ $13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCHH}), 3.06(\mathrm{dd}, J=13.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BnCH} H)$, 3.34 (s, 3H, OMe), 3.57 (ddd, $J=15.3,6.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.75 $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCHH}), 3.80(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCH} H)$, 3.94 (ddd, $J=15.3,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H), 4.05$ (ddd, $J=12.6,6.9$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 4.30 (ddd, $J=12.6,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), $4.61-$ $4.69(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.21-7.31(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.1$ (3C), 10.0, 40.5, 45.9, 48.9, 56.7, 58.2, 72.3, 73.3, 108.6, 127.0, 128.6 (2C), 129.2 (2C), 137.9, 155.5; MS (FAB) m/z (\%) $398\left(\mathrm{MH}^{+}, 6\right), 73$ (100); HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{SSi}\left(\mathrm{MH}^{+}\right)$, 398.1821; found, 398.1838.
(5S)-5-Benzyl-7-methoxymethyl- $2 \mathrm{H}, 3 \mathrm{H}, \mathbf{4 H}, 5 \mathrm{H}-1,4$-oxazepine (38). To a stirred solution of CsF ($159 \mathrm{mg}, 10.5 \mathrm{mmol}$) in DMF (1 mL) was added 1,4-oxazepine $37(83 \mathrm{mg}, 0.21 \mathrm{mmol})$ in DMF (1 mL) at room temperature. After stirring for 12 h at $95^{\circ} \mathrm{C}, \mathrm{MeOH}(3 \mathrm{~mL})$ was added, and the mixture was concentrated under reduced pressure. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, filtered, and evaporated. The crude amine was purified by column chromatography over silica gel with n-hexane-ethanol-chloroform ($5: 1: 1$) to give $\mathbf{3 8}(36 \mathrm{mg}, 73 \%$ yield) as a colorless oil: $[\alpha]^{27}{ }_{\mathrm{D}}+19.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\mathrm{cm}^{-1} 3323(\mathrm{NH}), 1672$ $(\mathrm{C}=\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 2.77-$ $2.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 2.90$ (ddd, $J=13.8,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHH}$), 3.17 (ddd, $J=13.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H$), 3.34 (s, 3H, OMe), 3.66$3.86\left(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}, \mathrm{MeOCH}_{2}\right.$ and CHH), 4.24 (ddd, $J=12.3,6.0,1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHH}), 4.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.21-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.2,50.1,56.9,58.1,73.6,73.7,111.6$, 126.5, 128.5 (2C), 129.2 (2C), 138.7, 155.0; MS (FAB) m/z (\%) 234 (MH^{+}, 85), 142 (100); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 234.1494; found, 234.1499.

1-\{2-[2-(tert-Butyldimethylsiloxy)ethyl]phenyl\}but-3-yn-2-ol (48). To a stirred solution of oxalyl chloride ($2.93 \mathrm{~mL}, 33.6 \mathrm{mmol}$) in $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen was added dropwise a solution of DMSO ($7.96 \mathrm{~mL}, 112 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After 45 min , a solution of the alcohol $47(6.28 \mathrm{~g}, 22.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature. Diisopropylethylamine ($27.0 \mathrm{~mL}, 157 \mathrm{mmol}$) was added to the above solution at $-78^{\circ} \mathrm{C}$, and the mixture was stirred
for 30 min with warming to $0^{\circ} \mathrm{C}$. The mixture was made acidic with $4 \% \mathrm{HCl}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, saturated NaHCO_{3}, and brine and was dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude aldehyde as an oil. To a stirred solution of trimethylsilylacetylene ($3.96 \mathrm{~mL}, 28.0 \mathrm{mmol}$) in dry THF (10 mL) under nitrogen was added n - BuLi (1.56 M solution in n-hexane; $17.2 \mathrm{~mL}, 26.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at this temperature. A solution of the crude aldehyde in dry THF (15 mL) was added to the above stirred reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h with warming to $-60^{\circ} \mathrm{C}$, followed by quenching with saturated $\mathrm{NH}_{4}-$ Cl. The mixture was made acidic with $4 \% \mathrm{HCl}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, saturated NaHCO_{3}, and brine and was dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give the TMS derivative as an oil. To a stirred solution of this oil in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added dropwise $\mathrm{NaOMe}(242 \mathrm{mg}, 4.5 \mathrm{mmol})$ in $\mathrm{MeOH}(4.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at room temperature. The mixture was concentrated under reduced pressure, and the residue was filtered through a short pad of SiO_{2} with n-hexane-ethyl acetate (5:2) and concentrated. The residue was purified by column chromatography over silica gel with n-hexane-ethyl acetate (4:1) to give 48 (4.43 g, 65\% yield) as a colorless oil: IR (KBr) $\mathrm{cm}^{-1} 3298(\mathrm{OH}), 2116(\mathrm{C} \equiv \mathrm{C}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right)$, $2.44(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 2.94(\mathrm{t}$, $\left.J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 1^{\prime}-\mathrm{CH}_{2}\right), 3.10-3.13\left(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{CH}_{2}\right), 3.84(\mathrm{t}, J=6.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{2}\right), 4.56-4.63(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 7.13-7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.48$ (2C), 18.4, 25.9 (3C), 35.8, 40.6, $62.9,64.3,73.6,84.3,126.3,127.0,130.1,130.8,135.0,137.9 ; \mathrm{MS}$ (FAB) m/z (\%) $305\left(\mathrm{MH}^{+}, 29\right), 155$ (100); HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$, 305.1937; found, 305.1931.

General Procedure for the Synthesis of Bromoallenes Bearing an Active Methylene Nucleophile. Synthesis of (4S,aS)-1-Bromo-4-\{N,N-[4,4-bis(methoxycarbonyl)butyl](4-methylphenylsulfonyl)-amino\}penta-1,2-diene (66). To a stirred mixture of $\mathrm{PPh}_{3}(157 \mathrm{mg}$, $0.60 \mathrm{mmol})$, the bromoallene $\mathbf{1 5 b}(150 \mathrm{mg}, 0.40 \mathrm{mmol})$, and diisopropylethylamine ($0.104 \mathrm{~mL}, 0.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under nitrogen was added $\mathrm{I}_{2}(152 \mathrm{mg}, 0.60 \mathrm{mmol})$ at room temperature, and the mixture was stirred for 6 h at this temperature. Concentration under reduced pressure gave an oily residue, which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (5:1) to give the corresponding iodide ($184 \mathrm{mg}, 95 \%$ yield) as colorless needles. To a stirred suspension of $\mathrm{NaH}(18 \mathrm{mg}, 0.45 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ under nitrogen was added dimethyl malonate $(0.057 \mathrm{~mL}, 0.50 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at room temperature. To the stirred mixture was added a solution of the above iodide (121 mg , $0.25 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2.5 h at room temperature. The mixture was poured into ice-water (1 mL) saturated with $\mathrm{NH}_{4} \mathrm{Cl}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine and was dried over MgSO_{4}. Concentration under reduced pressure gave an oily residue,
which was purified by column chromatography over silica gel with n-hexane-ethyl acetate (3:1) to give $66(110 \mathrm{mg}, 90 \%$ yield; 86% yield for two steps) as a colorless oil: $[\alpha]^{27}{ }_{\mathrm{D}}-34.5$ (c 1.05, $\left.\mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1} 1957(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1751(\mathrm{C}=\mathrm{O}), 1736(\mathrm{C}=\mathrm{O}), 1340\left(\mathrm{NSO}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe}), 1.61-$ $1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ph} M e), 3.07-$ $3.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left[\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right], 3.75$ $(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{OMe}), 4.63-4.73(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 5.16(\mathrm{dd}, J=5.4,5.4 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 6.07(\mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.68-7.71 (m, 2H, Ph); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,21.5,26.1$, $29.0,43.4,51.10,51.14,52.5$ (2C), 75.1, 101.3, 127.1 (2C), 129.8 (2C), 137.4, 143.5, 169.5 (2C), 202.3; MS (FAB) $m / z(\%) 490\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right.$, 54), $488\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}, 54\right), 344$ (100); HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{27^{-}}$ $\mathrm{BrNO}_{6} \mathrm{~S}\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 488.0742$; found, 488.0747.
(8S,6Z)-5,5-Bis(methoxycarbonyl)-6-methoxymethyl-8-methyl-1-(4-methylphenylsulfonyl)-1H,3H,4H,8H-tetrahydroazocine (67). By a procedure identical to that described for the preparation of the 1,4 oxazepines $\mathbf{2 4 b}$ and 25b from 15b, the bromoallene $\mathbf{6 6}(48.8 \mathrm{mg}, 0.10$ mmol) was converted into $67(24.5 \mathrm{mg}, 56 \%$ yield) as colorless needles: mp $150-153{ }^{\circ} \mathrm{C}$ (n-hexane-ethyl acetate); $[\alpha]^{27}{ }_{\mathrm{D}}+7.88(c$ $\left.0.90, \mathrm{CHCl}_{3}\right)$; IR (KBr$)_{\mathrm{cm}^{-1}} 1747(\mathrm{C}=\mathrm{O}), 1716(\mathrm{C}=\mathrm{O}), 1335\left(\mathrm{NSO}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27-1.34(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CHH}), 1.41(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CMe}), 1.88-1.95(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{CHH}), 2.32-2.37(\mathrm{~m}, 1 \mathrm{H}$, 4-CHH), $2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ph} M e), 2.55-2.59(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{CHH}), 2.93-2.97$ $(\mathrm{m}, 1 \mathrm{H}, 2-\mathrm{CHH}), 3.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.65-3.75(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{CHH}), 3.67$ (s, 3H, OMe), 3.72 (s, 3H, OMe), 3.92 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCHH})$, $4.29(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{MeOCH} H), 4.93(\mathrm{qd}, J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{H}), 5.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 7.27-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.70-$ $7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7,21.4,28.2,41.0$, 43.7, 52.6, 52.9, 56.6, 58.5, 65.7, 67.6, 126.9 (2C), 129.6 (2C), 135.8, 138.0, 139.0, 143.0, 169.4, 169.9; MS (FAB) m/z (\%) $440\left(\mathrm{MH}^{+}, 32.0\right)$, 136 (100); HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{~S}\left(\mathrm{MH}^{+}\right), 440.1743$; found, 440.1735.

Acknowledgment. We thank Dr. S. Ogoshi, Osaka University, for useful information regarding the mechanism of the reaction. This work was supported by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Culture, Sports, Science and Technology of Japan. H.H. is grateful to Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

Supporting Information Available: Synthetic procedures and characterization for $\mathbf{3}, \mathbf{1 3} \mathbf{a}, 15 \mathbf{a}, 15 \mathbf{c}-\mathbf{e}, 17 \mathbf{a}, 17 \mathbf{c}-\mathbf{e}, 21,23$, 24a, 24c-e, 25a, 26a-e, 27a-c, 28, 29, 31, 32, 40, 42, 44-$46,49-62,64,65,68,69,83,86,87,89-92$, and $93 ;{ }^{1} \mathrm{H}$ NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JA048693X

[^0]: (1) For a recent review, see: Evans, P. A.; Holmes, A. B. Tetrahedron 1991, 47, 9131-9166.
 (2) For selected examples for seven-membered heterocycles, see: (a) Duong, T.; Prager, R. H.; Tippett, J. M.; Ward, A. D.; Kerr, D. I. Aus. J. Chem. 1976, 29, 2667-2682. (b) Boros, C.; Hamilton, S. M.; Katz, B.; Kulanthaivel, P. J. Antibiot. 1994, 47, 1010-1016. (c) Ishihara, Y.; Hirai, K.; Miyamoto, M.; Goto, G. J. Med. Chem. 1994, 37, 2292-2299. (d) MorísVaras, F.; Qian, X.-H.; Wong, C.-H. J. Am. Chem. Soc. 1996, 33, 76477652. (e) Grunewald, G. L.; Dahanukar, V. H.; Ching, P.; Criscione, K. R. J. Med. Chem. 1996, 39, 3539-3546.
 (3) For selected examples for eight-membered heterocycles, see: (a) Basil B.; Coffee, E. C. J.; Gell, D. L.; Maxwell, D. R.; Sheffield, D. J.; Wooldridge, K. R. H. J. Med. Chem. 1970, 13, 403-406. (b) Klayman, D. L.; Scovill, J. P.; Bartosevich, J. F.; Mason, C. J. J. Med. Chem. 1979, 22, 1367-1373. (c) Vedejs, E.; Galante, R. J.; Goekjian, P. G. J. Am. Chem. Soc. 1998, 120, 3613-3622. (d) Ma, D.; Tang, G.; Kozikowski, A. P. Org. Lett. 2002, 4, 2377-2380. (e) Stærk, D.; Witt, M.; Oketch-Rabah, H. A.; Jaroszewski, J. W. Org. Lett. 2003, 5, 2793-2796 and references therein.

[^1]: (4) For a recent review, see: (a) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073-2077. For selected examples, see: (b) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324-7325. (c) Miller, S. J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108-2109. (d) Visser, M. S.; Heron, N. M.; Didiuk, M. T.; Sagal, J. F.; Hoveyda, A. H. J. Am. Chem. Soc. 1996, 118, 4291-4298. (e) Paquette, L. A.; Leit, S. M. J. Am. Chem. Soc. 1999, 121, 8126-8127. (f) Cook, G. R.; Shanker, P. S.; Peterson, S. L. Org. Lett. 1999, 1, 615-617. (g) Mori, M.; Kitamura, T.; Sakakibara, N.; Sato, Y. Org. Lett. 2000, 2, 543-545. (h) Fürstner, A.; Guth, O.; Düffels, A.; Seidel, G.; Liebl, M.; Gabor, B.; Mynott, R. Chem. Eur. J. 2001, 7, 4811-4820. (i) Dolman, S. J.; Sattely, E. S.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6991-6997.
 (5) For other recent synthesis of medium-ring heterocycles, see: (a) Evans, P. A.; Holmes, A. B.; Russel, K. Tetrahedron: Asymmetry 1990, 1, 593596. (b) Kitano, T.; Shirai, N.; Motoi, M.; Sato, Y. J. Chem. Soc., Perkin Trans. 1 1992, 2851-2854. (c) Crombie, L.; Haigh, D.; Jones, R. C. F.; Mat-Zin, A. R. J. Chem. Soc., Perkin Trans. 1 1993, 2047-2054. (d) Coates, W. J.; Dhanak, D. Heterocycles 1993, 36, 1631-1639. (e) Wright, D. L.; Weekly, R. M.; Groff, R.; McMills, M. C. Tetrahedron Lett. 1996, 37, 2165-2168. (f) Bergmann, D. J.; Campi, E. M.; Jackson, W. R.; Patti, A. F.; Saylik, D. Tetrahedron Lett. 1999, 40, 5597-5600. (g) Ouyang, X.; Kiselyov, A. S. Tetrahedron 1999, 55, 8295-8302. (h) Zhang, J.; Jacobson, A.; Rusche, J. R.; Herlihy, W. J. Org. Chem. 1999, 64, 1074-1076. (i) Monovich, L. G.; Huérou. Y. L.; Rönn. M.; Molander, G. A. J. Am. Chem. Soc. 2000, 122, 52-57. (j) Räcker, R.; Döring, K.; Reiser, O. J. Org. Chem. 2000, 65, 6932-6939. (k) Meyers, A. I.; Downing, S. V.; Weiser, M. J. J. Org. Chem. 2001, 66, 1413-1419. (1) Donohoe, T. J.; Raoof, A.; Linney, I. D.; Helliwell, M. Org. Lett. 2001, 3, 861-864. (m) Iradier, F.; Arrayás, R. G.; Carretero, J. C. Org. Lett. 2001, 3, 2957-2960. (n) Tempest, P.; Ma, V.; Kelly, M. G.; Jones, W.; Hulme, C. Tetrahedron Lett. 2001, 42, 4963-4968. (o) Kan, T.; Kobayashi, H.; Fukuyama, T. Synlett 2002, 697699. (p) Ma, D.; Tang, G.; Kozikowski, A. P. Org. Lett. 2002, 4, $2377-$ 2380. See also ref 3c.

[^2]: (12) For preliminary communications, see: (a) Ohno, H.; Hamaguchi, H.; Ohata, M.; Tanaka, T. Angew. Chem., Int. Ed. 2003, 42, 1749-1753. (b) Ohno, H.; Hamaguchi, H.; Ohata, M.; Kosaka, S.; Tanaka, T. Heterocycles 2003, 61, 65-68.
 (13) The bromoallenes $\mathbf{1 3 b} \mathbf{-}$ were synthesized according to the reported procedure. ${ }^{9}$ For synthesis of the bromoallene 13a, see the Supporting Information.

[^3]: ${ }^{a}$ Reactions were carried out at $25^{\circ} \mathrm{C}$ in MeOH with diastereomerically pure bromoallenes, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, and NaOMe (1.5 equiv) unless otherwise stated. ${ }^{b}$ The reaction was conducted under reflux. ${ }^{c}$ Isolated yields.

[^4]: (26) Krafft, M.; Schmidt, P. Synth. Commun. 2002, 32, 2723-2732.

[^5]: (27) Exposure of the minor product $\mathbf{5 7}$ to the cyclization conditions led to complete recovery of 57 .
 (28) Structure of $\mathbf{6 4}$ was confirmed by NOE analysis as shown below.

[^6]: (37) For synthesis of the bromoallene $\mathbf{8 3}$ bearing two oxygen nucleophiles, see the Supporting Information.

